Exercise  Problem 3  

 

你好,这里是我的个人网站数学分析的每周一题栏目(数学分析每周一题,其中数学分析指的是数学中的分析学, 主要包括微积分,实分析,复分析)  ——————Alina Lagrange

 

Suppose that φS(R) and R|φ|2dx=1, show that R|xφ(x)|2dxRξ2|φ^(ξ)|2dξ116π2

 

Proof.

As  φS(R)R|φ(x)|2dx=Rxddx|φ(x)|2dx=Rxφ(x)φ(x)+xφ(x)φ(x)dx  By Cauthy-Schwartz inequality and Plancherel formula and the Fourier transform 1=R|φ(x)|2dx2R|xφ(x)φ(x)|dx2xφ(x)L2(R)φ(x)L2(R)=2xφ(x)L2(R)φ(x)^L2(R)=2xφ(x)L2(R)2πiξφ^(ξ)L2(R) Note :|φ|2=φ¯φ Hence we finished the proof.